Last updated: 2021-02-10

Checks: 6 1

Knit directory: Human_Development_snRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200812) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 84a97c7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  analysis/14-MarkerAnalysisBCT.Rmd
    Untracked:  data/adult-clust.txt
    Untracked:  data/cellinfoALL.Rdata
    Untracked:  data/dcm-clust.txt
    Untracked:  data/fetal-clust.txt
    Untracked:  data/gstlist-adult.Rdata
    Untracked:  data/gstlist-dcm-res03.Rdata
    Untracked:  data/gstlist-dcm.Rdata
    Untracked:  data/gstlist-fetal.Rdata
    Untracked:  data/gstlist-young.Rdata
    Untracked:  data/heart-markers-long.txt
    Untracked:  data/immune-markers-long.txt
    Untracked:  data/pseudobulk.Rds
    Untracked:  data/targets_pools.txt
    Untracked:  data/young-clust.txt
    Untracked:  output/adult-int.Rds
    Untracked:  output/adultObjs.Rdata
    Untracked:  output/all-counts.Rdata
    Untracked:  output/bct-treat-all.RData
    Untracked:  output/endo-int-FYA-filtered.Rds
    Untracked:  output/fetal-int.Rds
    Untracked:  output/fetalObjs.Rdata
    Untracked:  output/heart-int-FYA.Rds
    Untracked:  output/heartFYA.Rds
    Untracked:  output/human_c2_v5p2.rdata
    Untracked:  output/immune-int-FYA-filtered.Rds
    Untracked:  output/intermediateObs.Rdata
    Untracked:  output/neuron-int-FYA-filtered.Rds
    Untracked:  output/smc-int-FYA-filtered.Rds
    Untracked:  output/young-int.Rds
    Untracked:  output/youngObjs.Rdata

Unstaged changes:
    Modified:   analysis/06-Celltype-Composition.Rmd
    Modified:   analysis/15-MarkerAnalysisBCT.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Load libraries and functions

library(edgeR)
library(RColorBrewer)
library(org.Hs.eg.db)
library(limma)
library(Seurat)
library(monocle)
library(cowplot)
library(DelayedArray)
library(scran)
library(NMF)
library(workflowr)
library(ggplot2)
library(clustree)
library(dplyr)
library(gridBase)
library(grid)
library(speckle)

Read in the data objects

targets <- read.delim("./data/targets.txt",header=TRUE, stringsAsFactors = FALSE)
targets$FileName2 <- paste(targets$FileName,"/",sep="")
targets$Group_ID2 <- gsub("LV_","",targets$Group_ID)
group <- c("Fetal_1","Fetal_2","Fetal_3",
           "Young_1","Young_2","Young_3",
           "Adult_1","Adult_2","Adult_3", 
           "Diseased_1","Diseased_2",
           "Diseased_3","Diseased_4")
m <- match(group, targets$Group_ID2)
targets <- targets[m,]
# Load unfiltered counts matrix for every sample (object all)
load("./output/all-counts.Rdata")
heart <- readRDS(file="./output/heartFYA.Rds")
heart$Broad_celltype <- factor(heart$Broad_celltype,
              levels=c("Cardiomyocytes","Fibroblast","Endothelial cells",
                       "Immune cells","Epicardial cells","Neurons",
                       "Smooth muscle cells","Erythroid"))
heart$biorep <- factor(heart$biorep,levels=c("f1","f2","f3","y1","y2","y3","a1","a2","a3"))
table(heart$biorep,heart$Broad_celltype)

all.bct <- factor(heart$Broad_celltype,
              levels=c("Cardiomyocytes","Fibroblast","Endothelial cells",
                       "Immune cells","Epicardial cells","Neurons",
                       "Smooth muscle cells","Erythroid"))
sample <- heart$biorep
m <- match(colnames(heart),colnames(all))
all.counts <- all[,m]

Get gene annotation and perform filtering

columns(org.Hs.eg.db)
ann <- AnnotationDbi:::select(org.Hs.eg.db,keys=rownames(all.counts),columns=c("SYMBOL","ENTREZID","ENSEMBL","GENENAME","CHR"),keytype = "SYMBOL")
m <- match(rownames(all.counts),ann$SYMBOL)
ann <- ann[m,]
mito <- grep("mitochondrial",ann$GENENAME)
ribo <- grep("ribosomal",ann$GENENAME)
missingEZID <- which(is.na(ann$ENTREZID))
chuck <- unique(c(mito,ribo,missingEZID))
all.counts.keep <- all.counts[-chuck,]
ann.keep <- ann[-chuck,]
numzero.genes <- rowSums(all.counts.keep==0)
keep.genes <- numzero.genes < (ncol(all.counts.keep)-20)
all.keep <- all.counts.keep[keep.genes,]
ann.keep.all <- ann.keep[keep.genes,]

Limma analysis

logcounts.all <- normCounts(all.keep,log=TRUE,prior.count=0.5)

design <- model.matrix(~0+all.bct+sample)
colnames(design)[1:(length(levels(all.bct)))] <- levels(all.bct)

mycont <- matrix(0,ncol=length(levels(all.bct)),nrow=length(levels(all.bct)))
colnames(mycont)<-levels(all.bct)
diag(mycont)<-1
mycont[upper.tri(mycont)]<- -1/(length(levels(all.bct))-1)
mycont[lower.tri(mycont)]<- -1/(length(levels(all.bct))-1)

# Fill out remaining rows with 0s
zero.rows <- matrix(0,ncol=length(levels(all.bct)),nrow=(ncol(design)-length(levels(all.bct))))
test <- rbind(mycont,zero.rows)

fit <- lmFit(logcounts.all,design)
fit.cont <- contrasts.fit(fit,contrasts=test)
fit.cont <- eBayes(fit.cont,trend=TRUE,robust=TRUE)

fit.cont$genes <- ann.keep.all

treat.all <- treat(fit.cont,lfc=0.5)
dt <- decideTests(treat.all)
summary(dt)
       Cardiomyocytes Fibroblast Endothelial cells Immune cells
Down              323        207               418          610
NotSig          18056      18314             18407        17783
Up                822        680               376          808
       Epicardial cells Neurons Smooth muscle cells Erythroid
Down                125     261                  79      1493
NotSig            18512   18392               18627     17340
Up                  564     548                 495       368
par(mfrow=c(3,3))
par(mar=c(5,5,2,2))
for(i in 1:ncol(treat.all)){
  plotMD(treat.all,coef=i,status = dt[,i],hl.cex=0.5)
  abline(h=0,col=colours()[c(226)])
  lines(lowess(treat.all$Amean,treat.all$coefficients[,i]),lwd=1.5,col=4)
}

DotPlot to visualise marker genes

heart <- readRDS("./output/heartFYA.Rds")
DefaultAssay(heart) <- "RNA"

sig.genes <- gene.label <- vector("list", ncol(treat.all))
for(i in 1:length(sig.genes)){
  top <- topTreat(treat.all,coef=i,n=Inf,sort.by="t")
  sig.genes[[i]] <- rownames(top)[top$logFC>0][1:10]
  gene.label[[i]] <- paste(rownames(top)[top$logFC>0][1:10],colnames(treat.all)[i],sep="-")
} 

csig <- unlist(sig.genes)
genes <- unlist(gene.label)

missing <- is.na(match(csig,rownames(heart)))

csig2 <- csig[!missing]

gene.cols <- rep(c(ggplotColors(7),"grey"),each=10)
gene.cols <- gene.cols[!missing]

d <- duplicated(csig2)
csig2 <- csig2[!d]
gene.cols <- gene.cols[!d]
DotPlot(heart,features=unique(csig2),group.by="Broad_celltype",cols = c("lightgrey", "red"))+RotatedAxis() + FontSize(y.text = 8, x.text=14) + labs(y=element_blank(),x=element_blank()) + coord_flip() + theme(axis.text.y = element_text(color=(gene.cols)))

Perform gene set testing on reactome sets

load("./output/human_c2_v5p2.rdata")
c2.id <- ids2indices(Hs.c2,treat.all$genes$ENTREZID)
reactome.id <-c2.id[grep("REACTOME",names(c2.id))]

Reactome figures - cardio

cardio.camera <- cameraPR(treat.all$t[,1],reactome.id)
cardio.camera.up <- cardio.camera[cardio.camera[,2]=="Up",]

fibro.camera <- cameraPR(treat.all$t[,2],reactome.id)
fibro.camera.up <- fibro.camera[fibro.camera[,2]=="Up",]

endo.camera <- cameraPR(treat.all$t[,3],reactome.id)
endo.camera.up <- endo.camera[endo.camera[,2]=="Up",]

immune.camera <- cameraPR(treat.all$t[,4],reactome.id)
immune.camera.up <- immune.camera[immune.camera[,2]=="Up",]

epic.camera <- cameraPR(treat.all$t[,5],reactome.id)
epic.camera.up <- epic.camera[epic.camera[,2]=="Up",]

neuron.camera <- cameraPR(treat.all$t[,6],reactome.id)
neuron.camera.up <- neuron.camera[neuron.camera[,2]=="Up",]

smc.camera <- cameraPR(treat.all$t[,7],reactome.id)
smc.camera.up <- smc.camera[smc.camera[,2]=="Up",]

eryth.camera <- cameraPR(treat.all$t[,8],reactome.id)
eryth.camera.up <- eryth.camera[eryth.camera[,2]=="Up",]

nsets <- 5
all.cam <- rbind(cardio.camera.up[1:nsets,], fibro.camera.up[1:nsets,],
                       endo.camera.up[1:nsets,],immune.camera.up[1:nsets,],
                       epic.camera.up[1:nsets,],neuron.camera.up[1:nsets,],
                       smc.camera.up[1:nsets,],eryth.camera.up[1:nsets,])

scores <- -log10(all.cam$PValue)
names(scores) <- rownames(all.cam)
names(scores) <- gsub("REACTOME_","",names(scores))
par(mfrow=c(1,1))
par(mar=c(5,41,3,2))
barplot(scores[length(scores):1],horiz = T,las=2,col=rev(rep(c(ggplotColors(7),"grey"),each=nsets)),cex.names=0.9,
        cex.axis = 1.5,xlab="-log10(PValue)",cex.lab=1.5)
abline(v= -log10(0.05),lty=2)


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
 [1] grid      splines   parallel  stats4    stats     graphics  grDevices
 [8] utils     datasets  methods   base     

other attached packages:
 [1] speckle_0.0.2               gridBase_0.4-7             
 [3] dplyr_1.0.2                 clustree_0.4.3             
 [5] ggraph_2.0.4                NMF_0.23.0                 
 [7] cluster_2.1.0               rngtools_1.5               
 [9] pkgmaker_0.32.2             registry_0.5-1             
[11] scran_1.18.1                SingleCellExperiment_1.12.0
[13] SummarizedExperiment_1.20.0 GenomicRanges_1.42.0       
[15] GenomeInfoDb_1.26.1         DelayedArray_0.16.0        
[17] MatrixGenerics_1.2.0        matrixStats_0.57.0         
[19] cowplot_1.1.0               monocle_2.18.0             
[21] DDRTree_0.1.5               irlba_2.3.3                
[23] VGAM_1.1-4                  ggplot2_3.3.2              
[25] Matrix_1.2-18               Seurat_3.2.2               
[27] org.Hs.eg.db_3.12.0         AnnotationDbi_1.52.0       
[29] IRanges_2.24.0              S4Vectors_0.28.0           
[31] Biobase_2.50.0              BiocGenerics_0.36.0        
[33] RColorBrewer_1.1-2          edgeR_3.32.0               
[35] limma_3.46.0                workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] reticulate_1.18           tidyselect_1.1.0         
  [3] RSQLite_2.2.1             htmlwidgets_1.5.2        
  [5] combinat_0.0-8            docopt_0.7.1             
  [7] BiocParallel_1.24.1       Rtsne_0.15               
  [9] munsell_0.5.0             codetools_0.2-18         
 [11] ica_1.0-2                 statmod_1.4.35           
 [13] future_1.20.1             miniUI_0.1.1.1           
 [15] withr_2.3.0               colorspace_2.0-0         
 [17] fastICA_1.2-2             knitr_1.30               
 [19] rstudioapi_0.13           ROCR_1.0-11              
 [21] tensor_1.5                listenv_0.8.0            
 [23] labeling_0.4.2            git2r_0.27.1             
 [25] slam_0.1-47               GenomeInfoDbData_1.2.4   
 [27] polyclip_1.10-0           farver_2.0.3             
 [29] bit64_4.0.5               pheatmap_1.0.12          
 [31] rprojroot_2.0.2           parallelly_1.21.0        
 [33] vctrs_0.3.5               generics_0.1.0           
 [35] xfun_0.19                 R6_2.5.0                 
 [37] doParallel_1.0.16         graphlayouts_0.7.1       
 [39] rsvd_1.0.3                locfit_1.5-9.4           
 [41] bitops_1.0-6              spatstat.utils_1.17-0    
 [43] assertthat_0.2.1          promises_1.1.1           
 [45] scales_1.1.1              gtable_0.3.0             
 [47] beachmat_2.6.2            globals_0.14.0           
 [49] goftest_1.2-2             tidygraph_1.2.0          
 [51] rlang_0.4.9               lazyeval_0.2.2           
 [53] yaml_2.2.1                reshape2_1.4.4           
 [55] abind_1.4-5               httpuv_1.5.4             
 [57] tools_4.0.2               ellipsis_0.3.1           
 [59] ggridges_0.5.2            Rcpp_1.0.5               
 [61] plyr_1.8.6                sparseMatrixStats_1.2.0  
 [63] zlibbioc_1.36.0           purrr_0.3.4              
 [65] RCurl_1.98-1.2            densityClust_0.3         
 [67] rpart_4.1-15              deldir_0.2-3             
 [69] pbapply_1.4-3             viridis_0.5.1            
 [71] zoo_1.8-8                 ggrepel_0.8.2            
 [73] fs_1.5.0                  magrittr_2.0.1           
 [75] data.table_1.13.2         lmtest_0.9-38            
 [77] RANN_2.6.1                fitdistrplus_1.1-1       
 [79] patchwork_1.1.0           mime_0.9                 
 [81] evaluate_0.14             xtable_1.8-4             
 [83] sparsesvd_0.2             gridExtra_2.3            
 [85] HSMMSingleCell_1.10.0     compiler_4.0.2           
 [87] tibble_3.0.4              KernSmooth_2.23-18       
 [89] crayon_1.3.4              htmltools_0.5.0          
 [91] mgcv_1.8-33               later_1.1.0.1            
 [93] tidyr_1.1.2               DBI_1.1.0                
 [95] tweenr_1.0.1              MASS_7.3-53              
 [97] igraph_1.2.6              pkgconfig_2.0.3          
 [99] plotly_4.9.2.1            scuttle_1.0.3            
[101] foreach_1.5.1             dqrng_0.2.1              
[103] XVector_0.30.0            stringr_1.4.0            
[105] digest_0.6.27             sctransform_0.3.1        
[107] RcppAnnoy_0.0.17          spatstat.data_1.5-2      
[109] rmarkdown_2.5             leiden_0.3.5             
[111] uwot_0.1.9                DelayedMatrixStats_1.12.1
[113] shiny_1.5.0               lifecycle_0.2.0          
[115] nlme_3.1-150              jsonlite_1.7.1           
[117] BiocNeighbors_1.8.1       viridisLite_0.3.0        
[119] pillar_1.4.7              lattice_0.20-41          
[121] fastmap_1.0.1             httr_1.4.2               
[123] survival_3.2-7            glue_1.4.2               
[125] qlcMatrix_0.9.7           FNN_1.1.3                
[127] spatstat_1.64-1           png_0.1-7                
[129] iterators_1.0.13          bluster_1.0.0            
[131] bit_4.0.4                 ggforce_0.3.2            
[133] stringi_1.5.3             blob_1.2.1               
[135] BiocSingular_1.6.0        memoise_1.1.0            
[137] future.apply_1.6.0